EMont describes and assesses knowing-how knowledge (expertise, behavior and (non-)human activities) and worldviews. The ontology consists of eight modeling elements, which will be introduced shortly with help of the fictitious and simplified situation of people counteracting a flooding disaster.
In EMM human behavior is defined as 'human activity systems’. Human activity systems, as well as activities of other kinds of actors (e.g. machinery), can be modeled with help of the PQR formula. This formula originates from the Soft Systems Methodology, and has to be applied as a root definition: a statement written in a few sentences capturing the intention of someone’s worldview. It concisely captures (human) activities executed to deal with particular circumstances which are motivated by the actors' worldview. The PQR formula is pivotal to EMont. The letters P, Q and R do not resemble anything, except for being subsequent letters in the alphabet. A specific meaning, however, is attached to these letters:
PQR | Meaning | ||
---|---|---|---|
P | What? | Activity | What activity are we going to do, perform, execute or what process is going to happen? |
Q | How? | Sub-activity | In what way are we going to do it? |
R | Why? | Goal | What goal do we want to achieve? |
Do P by a Q in order to achieve R.Applying the PQR formula touches upon the expertise or knowing-how knowledge of an expert, who, based on his experience, intuitively knows what to do in specific situations. In other words, an expert applies the right activity patterns almost without consciously thinking. The PQR formula in the case of counteracting a disaster (see figure 1) looks like:
You can counteract the disaster (P - what) by, depending on the circumstances, fighting it (Q1 - how) or evacuating (Q2 - how) in order to save your and your relatives' lives (R - why).
The PQR formula can be applied recursively. A How (Q) can be decomposed in more specific or diverse How's (Q's). To continue from the example in figure 1: the evacuation activity can be subdivided into evacuation by car (Q2,1) or by public transport (Q2,2). Hence, the evacuation activity (Q2) gets the status of an activity (P) for its constituents.
Generalizing from the example in figure 1: by applying the PQR formula recursively, we can model an experts’ knowledge, that is, his behavioral patterns, at any desired level of detail. The main activity (P) and main goal (R) address what should be done in a situation, they however do not yet specify how (Q) it can be done. Consequently, activities usually consist of more specific sub-activities (Q's), which altogether contribute to the main activity (P). Just like activities, goals can be decomposed into sub-goals as well.
To conclude, it can be observed that a context is used to model situations comprising of sub-situations and roles. In turn, a role may be regarded as a situation for its constituents. That is, a role can be seen as a situation made up of sub-roles and sub-situations. Another typical example of a context presented as a role is an organization with its specific objective or responsibility where its employees are engaged in specific activities. From the perspective of an employee however, the organization may appear as a situation to operate in rather than a role. So it is a matter of perspective from which we can abstract away by using the general concept of nested contexts.
A situation is characterized by one or more conditions. Conditions determine how and how well the actors in a situation interact and execute activities, but conditions can also be influenced by the behavior of actors. Hence, activities are interdependent of actors and conditions. A condition is often defined in a qualified way, e.g. “the availability of rescue workers”, or “ sufficient supply of evacuation resources”. As a result, a condition can also be regarded as an internal system indicator.
Typically, a goal and condition are related, expressed by the relation “contributes to”: a goal contributes to a condition. In figure 3, the goal “Right resources in the right place in time” contributes positively to the condition “Evacuation resources”. In other words, the condition is an indication of the extent to which the goal has been achieved. Note, a goal and a condition are deliberately modeled as different elements, because in real situations it frequently occurs that achieving one goal (contributing to a condition) is undermined by achieving another goal (contributing to the same condition).
The examples in figures 3 and 4 show the type and quality of relations between activities, goals and conditions.
Regarding the general pattern of relations as shown in figure 4: the condition establishes an implicit relation between Activity A and Activity B. There is, however, no need to make the dotted relations between Activity A and B explicit.
Regarding roles we have up to now focused only on one single way to carry out activities related to that role. However, people can carry out an activity in various ways. These different approaches originate from the variety people and their worldviews. And vice-versa: someone's worldview can vary depending on the situation he is engaged in. Therefore, different worldviews will have to be considered in modeling activities. Worldviews can be included in the model similarly to the way contexts were used to model roles in specific situations. Figure 5 illustrates a situation with different worldviews: a Civilian can deal with flooding by leading the neighborhood and helping his neighbors or by dealing with flooding on its own.
A belief is considered a fixed idea, which defines a worldview. A belief is similar to a condition, but in contrast, a belief cannot be changed within the system itself. In example 5 the context “Civilian dealing with flooding on its own” includes the belief “Do not trust the government”: this particular civilian does not expect anything positive from the government, no matter how hard the government tries.
Creating clarity in a complex model can be done firstly by developing a main scheme presenting the big picture which includes only the most important situations (sub-contexts). Details of the different situations are provided only when “zooming in” to these, thus by developing separate schemes that only describe the situation selected. The main scheme therefore provides a more generic basis (or the so-called ‘hooks’) for deriving sub-contexts to which, depending on the type of situation you are interested to have a detailed look at, information can be added.
To the sub-contexts generated in examples 2 and 3 information can be added and removed (see example 5). For instance: specialized roles, such as “Civilian dealing with flooding on its own” and “Civilian leading the neighborhood to deal with flooding” are derived from the role “Civilian dealing with flooding”. Modeling elements can be discarded when they are not of use or add value to a particular sub-context. For instance, the context “Civilian dealing with flooding on its own”, the activity “Fight” has been removed.
The octagonal shape indicates that this modeling element happens to be used in other contexts too. In example 5 “Evacuate” is an activity occurring elsewhere in het context “Flooding” as well.
All EMont modeling elements, as discussed in the previous paragraphs, brought together in one scheme:The strength of modeling complex situations with EMont lies in putting patterns of human/non-human (actors) behavior (PQR’s) in a context and applying these recursively. A context or situation is key to modeling roles and interactions of actors, including their different worldviews, in that particular context. The example of a flooding disaster is a simplified and incomplete illustration of a real situation. Modeling real situations can reflect reality in a comprehensive manner, but the models can also become very large. Applying contexts supports separating the main situation or processes from more detailed descriptions of the individual situations.
Subjects not discussed in this introduction to modeling with EMont include documenting good and bad practices, a sequence of activities (‘composed activities’), and modeling conceptual knowledge and its connection to PQR’s in a context. These subjects makes modeling with EMont more comprehensive, yet does not imply the introduction of significantly different elements to EMont.
Paginaoverzicht
Links naar verwante pagina's
Onderdeel van:
Expertise Management ontology
Gerefereerd door:
Expertise Management ontology
Gesprekken met betrokkenen
Uploads
Page name | Title | Author(s) | Date | |
---|---|---|---|---|
Bestand:20161214 An Ontology about Expertise Management JCC.docx | Bestand:20161214 An Ontology about Expertise Management JCC.docx | An ontology about Expertise Management | Hans de Bruin en Grabriëlle Rossing | 14 december 2016 |
Bestand:Reseach onion.jpg | Research oninon | Saunders et al. | 2105 | |
Bestand:Reseach onion.png | Research onion | Saunders et al. | 2015 | |
Gettier problem | Resource Hyperlink 00119 | Gettier problem | Wikipedia | 22 september 2016 |
DIKW pyramid | Resource Hyperlink 00120 | DIKW pyramid | Wikipedia | 22 september 2016 |
Research onion is je beste vriend | Resource Hyperlink 00121 | Research onion is je beste vriend | De afstudeerconsultant | 22 september 2016 |
Research Methods for Business Students | Resource Hyperlink 00122 | Research Methods for Business Students | Saunders et al. | 2015 |
Abductie | Resource Hyperlink 00123 | Abductie | Wikipedia | 30 september 2016 |
Inductie | Resource Hyperlink 00124 | Inductie | Wikipedia | 30 september 2016 |
Deductie | Resource Hyperlink 00125 | Deductie | Wikipedia | 30 september 2016 |
Wicked problem | Resource Hyperlink 00126 | Wicked problem | Wikipedia | |
System dynamics | Resource Hyperlink 00127 | System dynamics | Wikipedia | 1 oktober 2016 |
EMM beeldtaal | Resource Hyperlink 00136 | EMM beeldtaal | Hans de Bruin | 2016 |
Thesaurus Zorg en Welzijn | Resource Hyperlink 00198 | Thesaurus Zorg en Welzijn | Stimulanz | 9 januari 2017 |
Power Thesaurus | Resource Hyperlink 00199 | Power Thesaurus | Power Thesaurus | 9 januari 2017 |
Simple Knowledge Organization System | Resource Hyperlink 00200 | Simple Knowledge Organization System | W3C Semantic Web Deployment Working Group (SWDWG) | 18 augustus 2009 |